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Abstract—Related to the notion of derivative of a function,
its application to function optimization is an interesting and
illustrative problem for Engineering students. In the present
work, we develop an application of the derivative concept to
optimize the filtering of a colour image. This implies to optimize
the value of the filter parameter to maximize performance. We
propose to maximize the quality of the filtered image represented
by the Peak Signal to Noise Ratio (PSNR), which is a function
of the filter parameter. The optimal value for the parameter is
obtained by means of an algorithm based on the approximation
of the derivative of the PSNR function so that finally the optimum
filtered image is obtained.

I. INTRODUCTION

Applications of calculus of maxima of one variable func-
tions, presented to Engineering students, usually consists on
finding the zeroes of a derivative which is expressed in terms
of elementary functions. In some cases the numerical point
of view of the calculus of this derivative is also considered.
However, it is quite difficult to show a real and interesting
application where the derivative plays a crucial role. In this
paper we will see that the problem of optimizing an image by
using colour image filtering can be reduced to the calculus of
the maximum of a certain function called the Peak Signal to
Noise Ratio.

In Section II we will show some preliminaries about im-
age acquisition and representation. Some basic notions about
image filtering are also presented. The utility of fuzzy logic
is introduced for filtering design. Section III describes the
optimization algorithm based on the approximation of deriva-
tives. Section IV shows simulation results, and conclusions are
provided in Section V.

II. PRELIMINARIES

An image is a 2D representation of the objects in a 3D
scene which is obtained by projection of the 3D objects on
an image plane. In digital cameras, this projection is obtained
according to the pinhole camera model [1]-[3] (see Figure
1(a)): the objects, represented in a 3D space, are projected
through a center of projection on the 2D image plane. The
center of projection corresponds to the camera optics and the
image plane is physically represented as a Charge Coupled
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Fig. 1. (a) Scheme of the pinhole camera model: The object P , represented
in the (X, Y, Z) space, is projected through the center of projection (camera
optics) on the image plane (CCD) as the object P′. (b) A CCD sensor.

Device (CCD) sensor which captures the input radiation. The
CCD sensor (see Figure 1(b)) comprises an array of M ×
N single light sensors. This implies that the acquired digital
image is also an array of M ×N single elements called pixels
(from picture elements). In digital colour images, each pixel
represents a single colour of the image. Colours are commonly
represented in computers using the Red-Green-Blue (RGB)
colour space. This colour space follows an additive model so
that any colour is obtained by appropriately mixing the three
primaries: Red, Green and Blue. Thus, each colour image pixel
is associated with a tern of RGB values which represents the
appropriate quantity of each primary colour that should be
mixed to obtain the colour stored in that pixel.

Digital image acquisition process can be affected by many
different factors able to degrade the quality of the image.
For instance, deficient illumination conditions or CCD sensor
malfunctions may introduce irregularities in the image also
known as (Gaussian) noise. Other factors able to affect the
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Fig. 2. (a) Ideal noise-free image, (b) image corrupted with (Gaussian) noise.

image quality are, among others, transmission errors or storage
faults. Figure 2 shows an ideal noise-free image and the same
image contaminated with noise.

The presence of these irregularities, or noise, is not desired
mainly for two reasons: (i) the perceptual image quality is
lower, which is critical from the user standpoint, and (ii) the
presence of noise is an important drawback for many tools
of computer image analysis. Therefore, many techniques to
reduce image noise have been developed in the recent years
[2], [3]. Classical techniques to approach this problem are
based on a linear approach. The Arithmetic Mean Filter (AMF)
and the Gaussian Filter (GF) use an average operation among
each pixel and its neighbours pixels [2], [3]. These methods
are able to reduce image noise but they blur edges and details
in the image too much. To solve this, a series of nonlinear
methods were developed [2], [3],[4]-[8]. In general, these
techniques are based on detecting image edges and details and
smooth them less than the rest of image regions. In particular,
the techniques in [5]-[8] propose to average each image pixel
with only its neighbour pixels which are similar to it. Since
it is difficult to differentiate between similar and non-similar
pixels in a crisp way, it is more appropriate to assign a degree
of similarity. The Fuzzy Bilateral Filter (FBF) [8] that we use
in this work, employs fuzzy logic to assign this degree of
similarity. According to fuzzy logic, the degree of similarity
between two pixels is a value in [0, 1] that represents in which
degree two pixels are similar, where 1 means total similarity
(equality) and 0 total dissimilarity. Since Lofti A. Zadeh
introduced the theory of fuzzy sets in 1965, it has become
a well-known area of study in the last decades. Fuzzy logic
constitutes a generalization of the classical set theory which
represents a gradual transition between the classical notions of
outside and inside of a set. Fuzzy logic has been successfully
employed in many engineering problems and many related
research topics as, for instance, fuzzy topology and fuzzy
metrics [9]-[13], are still active.

In most adaptive nonlinear filters, and also in the case of
the FBF [8] that we use here, the smoothing capability can
be tuned by modifying the values of their parameters. Thus,
appropriate tuning is needed to achieve optimal performance.
In this paper, we illustrate how derivatives can be used to find
an appropriate setting of the λ parameter in the FBF filter.

For a detail descrption of this filter, we refer the interested
reader to [8]. For the purpose of this work, we just focus on
the fact that the performance of the filtering process (output
image quality) can be seen as a function of λ. Therefore, we
propose to optimize the image quality measure represented by
the Peak Signal to Noise Ratio (PSNR), which is a function of
this parameter. The optimal value for the parameter is obtained
by means of an algorithm based on the approximation of the
derivative of the PSNR function so that finally the optimum
filtered image is obtained.

III. OPTIMIZATION ALGORITHM DESCRIPTION

The quality of a filtered image can be measured with several
functions. In this case we will use the Peak Signal to Noise
Ratio (PSNR) which, since the quality of the filtered image
depends on λ, we define as a function of λ as follows:

PSNR(λ) = 20 log

⎛
⎜⎜⎝ 255√

1
NMQ

∑
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i ||2

⎞
⎟⎟⎠ (1)

where M , N are the image dimensions, || · ||2 denotes the
square of the Euclidean norm, Fo is the original noise-free
image, and Fλ is the filtered image obtained after applying
the FBF, respectively.

As mentioned above, we seek for the value of λ that achieve
the optimum PSNR performance. To find it, we apply the
following algorithm: First, we take an initial λ0 for λ as a
rough approximation to the optimum. For the current approx-
imation to the optimum, λn, we approximate the derivative of
PSNR(λn) as

D(λn) =
PSNR(λn + δ) − PSNR(λn − δ)

2 · δ , (2)

where, δ > 0. Now, we check whether the actual approxi-
mation to the optimum is already good enough: if |D(λn)| <
ε > 0, then the derivative at λn is small enough to conclude
that it is very close to the optimum, and the method stops.
Otherwise, we find the next approximation to the optimum
λn+1 from the previous λn as

λn+1 = λn + αD(λn), (3)

where α > 0 is called the learning parameter whose
importance will be commented in Section 3, and the above
procedure is repeated. Notice that, according to Eq. (5), the
sign of D(λn) indicates the direction in which the optimum is
located and the speed in which the algorithm advances towards
it is proportional to |D(λn)|.

IV. SIMULATION EXAMPLES

To illustrate the use of the derivative in the identification
of the optimum λ for the FBF, the corrupted image of Lenna
in Figure 2 (b) will be used. Figure 3 presents the PSNR
computed for the image and the complete range of λ values.
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Fig. 3. PSNR curve for the complete range of λ values in the corrupted
image of Lenna in Figure 2 (b).

This figure shows that the optimum filtering performance is
attained for λ = 0.24. To compute this PSNR curve, it
was necessary to filter the Lenna image one hundred times
- from λ = 0.01 to λ = 1 in steps of 0.01. This is a
valid but computational overwhelming method to obtain the
optimum parameter. Furthermore, we only obtain the optimum
with a certain accuracy which depends on the step used. To
improve the accuracy we need to reduce the step, which in turn
means to increase the number of times the image needs to be
filtered. For instance, to reduce the accuracy in one order, it is
necessary to increase by 10 the number of times the complete
image is filtered.

An alternative to the extensive computation used to obtain
Figure 3 is the derivative-based -or gradient-based- optimiza-
tion treated in this paper. Let us illustrate the use of this
method with an example. The optimization will be started
from the central value λ = 0.5. The optimization parameters
are δ = 0.01, ε = 0.1 and α = 0.05. The evolution of
the optimization is depicted in Figure 4(a). We arrive to the
optimum filtering the image only 12 times - the number of
approximations of the derivative (6) times the 2 applications
of the filter per approximation (2 according to Eq. (2)).
Furthermore, by reducing ε, the accuracy of the optimum can
be improved with only a few more runs. The optimum filtered
image attained is shown in Figure 4(b).

The convenient choice of the optimization parameters is of
paramount importance to ensure convergence to the optimum.
We have already commented that ε controls the accuracy
achieved in the identification of the optimum. In this paper,
we are considering the noise-free optimization case, so that
we assume that the function to optimize -the PSNR curve- is
free of measurement noise. If this is not the case, ε should be
high enough so that it exceeds the noise level in the derivative
estimation.

The three parameters, δ, α and ε, have interrelated effects.
For the sake of easy understanding, the influence of the
choice of δ and α will be discussed separately, varying the
parameters one at a time while maintaining the other fixed.
Let us run the optimization for δ values equally distanced in
the logarithmic scale over [0.001, 1] and for fixed values of
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Fig. 4. Optimization for initial point λ = 0.5 and δ = 0.01, α = 0.05 and
ε = 0.1: a) optimization steps, b) optimum filtered image.

α = 0.05 and ε = 0.1. The results are presented in Table I.
The lower the value of δ, the better the derivative estimation.
This is again assuming the PSNR function to optimize is
free of measurement noise - it is well known that derivative
estimations are highly affected by noise. Since the derivative
is more accurately estimated for low δ values, the optimization
arrives to higher values of PSNR. Also, we can see that the
value of δ is related to the number of points or λ values in the
optimization where the derivative is estimated. The higher the
value of δ, the lower the number of points. Notice that if δ is
too high, the optimization algorithm may not converge to the
optimum. The changes observed in the optimization method
due to the use of different values of δ can be easily explained
in simple geometric terms. If the current value of λ is far from
the optimum, high δ values result in derivative estimations of
high magnitude. Therefore, the optimization is speeded up and
the number of points evaluated are reduced. If otherwise λ is
close to the optimum, the optimum may be included in the
interval [λ−δ, λ+δ] where the derivative is estimated. If this
is the case, the magnitude of the derivative is underestimated.
The higher the value of δ, the higher the interval where this
occurs and the further to the optimum we may converge.

Let us run the optimization for α values equally distanced
in the logarithmic scale over [0.005, 5] and for fixed values
of δ = 0.01 and ε = 0.1. The results are presented in Table
II. We can see that the value of parameter α is especially
important for the optimization. The optimization may easily
diverge if the parameter is made too high. Nonetheless, for
very low values of α, the number of points where the derivative
has to be estimated is much increased. For instance, for α =
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δ # points Attained PSNR
1 · 10−3 8 31.822

3.26 · 10−3 6 31.822
1 · 10−2 6 31.822

3.26 · 10−2 6 31.822
1 · 10−1 5 31.815

3.26 · 10−1 4 31.634
1 ∞ Divergence

TABLE I
RESULTS FOR DIFFERENT VALUES OF δ AND α = 0.05 AND ε = 0.1 WITH

STARTING POINT λ = 0.5.

α # points Attained PSNR
5 · 10−3 55 31.822

1.58 · 10−2 18 31.822
5 · 10−2 6 31.822

1.58 · 10−1 29 31.822
5 · 10−1 ∞ Divergence

1.58 ∞ Divergence
5 ∞ Divergence

TABLE II
RESULTS FOR DIFFERENT VALUES OF α AND δ = 0.01 AND ε = 0.1 WITH

STARTING POINT λ = 0.5.

5 ·10−3, 55 derivative estimations were needed to arrive to the
optimum. This means that the Lenna image had to be filtered
110 times, 10 times more than for computing Figure 3. The
best α value, so that the algorithm converge to the optimum
in the lowest number of points, depends very much on the
initial point - initial λ value. As a general rule, α should be
set high enough for a fast exploration while not too high to
avoid divergence.

V. CONCLUSION

The use of real applications of Mathematics motivates the
learning process of students in several ways. In particular,
most mathematical notions can be explained by use of dif-
ferent models. In this work we have presented a simulation
model which will allow the students to relate the notion of
derivative of a function and one of its applications which is
optimization problems. By the simulation process described
in this paper, the students will approximate the optimal value
of the parameter in a function and, moreover, they will really
see how appropriate is the result of this algorithm since the
visualization of the output images by using a filter technique
will allow the students to search for better results. This
application can be used in a first semester of Calculus either
as a guided practice or as an accessible research project for
advanced students.
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