
Indexing and Searching Learning Objects in a
Peer-to-Peer Network

Aleksander Bułkowski and Edward Nawarecki
AGH University of Science and Technology

Dept. of Computer Science
Cracow, Poland

Email: nawar@agh.edu.pl

Andrzej Duda
Grenoble Institute of Technology
Grenoble Informatics Laboratory

Grenoble, France
Email: duda@imag.fr

Abstract—In this paper, we explore the idea of using Peer-
to-Peer (P2P) networks as advanced educational tools. A P2P
network can disseminate complex learning objects that act as
anchors for creating collaborative learning communities. The goal
is to create collaborative spaces of learners with similar interests
to exchange knowledge, opinions, and experience so that they can
learn, understand, and help/teach each other. The use of the P2P
technology for disseminating learning objects requires extending
current P2P systems with a support for precise indexing and
searching. In this way, potential learners can easily find and
choose relevant objects. The present paper describes the design
of an indexing and searching scheme for disseminating complex
mutable SCORM learning objects over BitTorrent.

Index Terms—learning objects; peer-to-peer systems; indexing;
DHT

I. INTRODUCTION

In this paper, we explore an idea for future educational
tools based on Peer-to-Peer (P2P) networks. Although such
networks offer a wide-spread means for disseminating media
content, currently they are mostly limited to music and movies.
However, a P2P network may also provide easy access to
educational resources instead of, or in addition to, standard
publishing of course material on Web servers, which often
requires considerable management and maintenance effort. In
a similar way to video or music files, we can easily disseminate
complex learning objects in a standard format such as SCORM
[1] among interested learners. As P2P networks operate in an
autonomous and spontaneous way with minimal management
overhead, users can use P2P applications with little or no
training.

We have begun to investigate how educational activities
can benefit from P2P networks and how we need to enhance
current P2P applications for disseminating learning objects.
This goal requires addressing the problem of precise indexing
and searching so that potential learners can easily find and
choose relevant objects. Another idea to explore is to use
learning objects as anchors for creating collaborative learn-
ing communities. Current P2P applications only disseminate
content, but users are not aware of who downloads a given
file. Knowing that somebody else is interested in a movie or
a music file may lead to interesting user interactions such
as following the choice of somebody else or establishing
collaborative opinions and advices. If we can attach some

information about users interested in specific content to files
disseminated over P2P networks, we would enable creation of
collaborative spaces of users with similar interests. Once such
a social network starts, its members can exchange knowledge,
opinions, and experience as well as they can extend their activ-
ities to learning processes by providing support, explanations,
discussions, and even mutual teaching. One interesting feature
of such a set up is that collaborative learning communities
may enhance the existing content and add more resources to a
given course material. Thus, we need to take into account that
learning objects become mutable unlike files disseminated in
current P2P networks.

The present paper describes the design of an indexing
and searching scheme for disseminating complex mutable
SCORM learning objects over BitTorrent [2]. Our approach
takes advantage of attributes extracted from SCORM objects
and of indexing concepts and terms added by the user from a
domain ontology. We use OpenDHT [3], an open distributed
storage service implemented over Planet Lab [4] to store
all needed indexes and associations. We have implemented
the proposed schemes in GLEN (Global Lecture Exchange
Network), a prototype P2P client based on Azureus (Vuze) [5].

II. DESIGN GOALS

Our goal is to disseminate learning objects in a P2P network
in a way that enables creation of collaborative communities of
learners. We recall below the design goals of our system:

• Support wide and easy distribution of learning objects.
Extend existing P2P applications for sharing, searching,
and downloading learning objects in a fully distributed
way without a central server.

• Change the traditional hierarchical teaching model into a
flat one in which anybody can teach anybody. Anybody
can download any learning object, extend its content, or
add a new learning object.

• Create collaborative communities of learners having com-
mon interest and objectives based on the access to the
same learning objects.

• Use learning objects as anchors for easy interactive
communication between learners (e.g. through Voice over
IP (VoIP) applications such as Skype or Gizmo). Down-

 
1665



loading a learning object gives information about other
learners that share the same interests.

Based on this set of requirements we have developed several
new schemes for structuring, indexing, and searching learning
objects. We describe them below.

III. STRUCTURE OF COMPLEX LEARNING OBJECTS

We consider learning objects in the SCORM 1.2 format that
allows linking various resources and adding descriptions in the
LOM format [6]. Popular engines like Blackboard or Moodle
can display such learning objects and several editors exist such
as eXe [7].

A. BitTorrent and DHT
We have decided to use BitTorrent as the underlying P2P

network and enhance a P2P client based on Azureus (Vuze) [5]
to support advanced functions of indexing, searching, and
retrieving learning objects. BitTorrent disseminates objects
through a torrent file that contains the information on an
object needed for downloading (name, piece length, number
of pieces, tracker, etc.). A tracker is a HTTP server that keeps
information on peers—nodes downloading the same object.
There are two categories of peers: seeders that have already
downloaded the whole object and can provide its pieces to
leechers, the peers that have not yet obtained all the pieces.

To download an object, a peer first downloads a torrent
file, computes the SHA1 hash function on its information part,
and contacts the tracker to obtain seeders (their IP addresses
and ports) that can send the pieces of the object. Then, it
queries them to obtain a bitmap of pieces stored at each seeder
and requests their download. A leecher also provides already
downloaded pieces to other peers.

In the trackerless operation of BitTorrent, the information
usually maintained by a tracker (peers, their addresses and
ports) is stored in the DHT (Distributed Hash Table) organized
on peers in a fully distributed way. Even if Azureus only uses
the DHT for storing the information usually maintained by
a tracker, we explain below the operational principles of the
DHT, because we rely on such a distributed storage service
for indexing and searching.

Azureus uses a modified Kademlia implementation for its
DHT [8] to store (key, value) pairs on different nodes. The
DHT interface offers the following operations:

• Ping to verify routes to other peers,
• Lookup(key) to find nodes that are near to the key in

the keyspace (nodes are identified by the SHA1 hash of
the node IP/port combination),

• Store(key, value) to store the value on the nodes close
to the key in the keyspace,

• Get(key) to retrieve the value from the nodes close to
the key in the keyspace.

To explain the operation of the DHT, we take an example
of storing files in the DHT (other P2P networks such as
eDonkey or eMule for example use a DHT to store and
retrieve files). A file is identified by a key derived from
its filename—a key is a 20 byte SHA1 hash function on a

filename: key = h(filename). The DHT maps keys to nodes
in the P2P network: the keyspace is the set of 20 byte strings
and each node has its place in the keyspace. To store a file, a
node first performs the Lookup(key) operation to find nodes
that are near to the key and then stores the file as the value
of the Store(key, value) operation at 20 nodes close to the
key in the keyspace. Retrieving the file proceeds in the inverse
way: a node looks up nodes close to a key and gets the file
from one of the nodes.

When Azureus operates in the trackerless mode, it uses
its DHT to only store the torrent information on peers,
then downloading of pieces proceeds in parallel from a large
number of peers. The key of the torrent information is a 20
byte SHA1 hash function on the descriptor (the information
part of a torrent): key = h(descriptor) and the stored
value corresponds to the information on the seeders usually
maintained by the tracker and necessary for downloading.

B. Learning objects and their structure

We want to design the structure of our learning objects so
that they may evolve while they disseminate in a collaborative
community: we want to be able to enhance the existing content
and add more resources, which results in multiple versions of
a learning object. However, existing P2P objects like an MP3
or a video file are immutable, i.e. they cannot be modified
once published on a P2P network. Thus, we need to enhance
the structure of P2P objects so they can be modified within a
collaborative community.

We obtain this goal by associating multiple identifiers with
a learning object. The first identifier is called LOID (Learning
Object Identifier) and multiple versions are identified by a
version specific VSLOID. Both identifiers follow the same
scheme as identifiers in BitTorrent—they are unique 20 byte
values generated by computing SHA1 function on the object
descriptor. Finally, each version is associated with a torrent
that allows to download a given learning object.

We need to maintain the associations between the identifiers
and an object by storing them in a persistent database. In the
spirit of P2P networks, we wanted to use a DHT to store
all needed associations as well as the indexing information
described below. One choice of a DHT would be to use the
Azureus DHT for this purpose, however running an opera-
tional service would require upgrading many nodes with our
modified version of Azureus, which was difficult to achieve.
Instead, we have used an open distributed storage service
called OpenDHT, a similar system that presents the same
basic DHT interface of the operations Store(key, value) and
Get(key). It provides a continuous DHT service over a large
number of Planet Lab nodes distributed all over the world.

Our learning objects are thus represented as the follow-
ing associations of identifiers and stored in OpenDHT as
(key, value) pairs (the left part of the association serves as
the key and the right part as the value):

LOID -> VSLOID
VSLOID -> LOID

 
1666



!"#$%&%'(

)*+",-(

!"#$%&%'()*+",-(
."$/&0%(1(

!"#$%&%'()*+",-(
."$/&0%(2(

!"#$%&%'()*+",-(
."$/&0%(3(

LOID: 1kda-faww-i342-fa2s-fai3 

VSLOID: r43f-fa33-fasw-pojj-faw4 

VSLOID: ufas-85gf-jsdf-gsds-fse3 

VSLOID: faaa-faas-0faj-faq3-qiad 

-0$$"%-(1(

-0$$"%-(2(

-0$$"%-(3(

Figure 1. Learning object identifiers.

VSLOID -> torrent

When we know an identifier of a given learning object, we
can retrieve its version identifiers and the torrent information
required for downloading. Figure 1 illustrates the notions of
LOID, VSLOID, and their relationships.

IV. METADATA AND DOMAIN ONTOLOGY

We propose to enable precise searching through the use of
metadata extracted from a learning object such as traditional
attributes Author, Title, Description, and others defined for
instance in the Dublin Core [9]. Metadata also includes
concepts from a domain ontology defined for a given class of
learning objects. A domain ontology is a network of domain
model concepts (topics, knowledge elements) that defines the
elements and the semantic relationships between them [10].

Figure 2. Example of a domain ontology.

Figure 2 presents an example of a predefined ontology with
simple inheritance relationships created in the RDF for-
mat [11] and built-in in our modified Azureus client. The
ontology forms a tree of concepts and terms from the most
general one to more specific concepts and terms. For instance,
we have the concept of digital camera that belongs to
the concept of photography or algebra belonging to
mathematics. The advantage of using such an ontology

is that we can add more general concepts to indexing terms
and use them as querying criteria to find related objects.
We can obtain an opposite effect for terms that have several
meanings—we can distinguish between them by specifying a
more general parent concept (such as lens for digital
camera) to restrict a query to more specific and precise
results.

Indexing consists of creating an inverted index that asso-
ciates metadata information with a given VSLOID represent-
ing a learning object. We use attributes from the SCORM
description (Dublin Core) or the LOM part of the object, for
instance attributes like Title: Digital Photography
Tips, Author: John Smith. The example attributes are
stored in the inverted index as the following relationships:

Title_Digital -> VSLOID
Title_Photography -> VSLOID
Title_Tips -> VSLOID
Author_John -> VSLOID
Author_Smith -> VSLOID

Similarly to maintaining the structure of a learning object,
we store the inverted index in OpenDHT as (key, value) pairs.
In the example above, the first association is for instance stored
as key = Title_Digital and value = VSLOID.

When indexing an object, the user can also add indexing
terms from the domain ontology. We encode ontology terms
by concatenating ONT prefix to a term or a concept. Thus, the
association has the following form in the DHT:

ONT_<TERM> -> VSLOID

For instance, when indexing a course on digital photog-
raphy, the author chooses the concept of lens to describe
the learning object, we also add more general concepts from
the domain ontology—the parent relation between digital
camera and photography. Thus, the following indexes are

 
1667



Figure 3. Indexing interface of GLEN.

stored in the DHT:

ONT_lens -> VSLOID
ONT_digital-camera -> VSLOID
ONT_photography -> VSLOID

Using the ontology for indexing enables for instance finding
the course relevant to digital photography even if the user
specifies lens as the searching term.

Finally, we add support for creating communities by associ-
ating the information of VoIP addresses with a given learning
object. In this way, those who download a given object can
contact other learners in an easy way via VoIP communication.
We store the object identifier with the COM prefix and the SIP
address of the user as the following association in the DHT:

COM_’VSLOID’ -> SIP-ID

When the user finds and downloads an object, we need to
present its metadata information to the user. For this goal, we
store direct indexes in the DHT—they have the following form
in our example:

VSLOID -> Title_Digital
VSLOID -> Title_Photography
VSLOID -> Title_Tips
VSLOID -> Author_John
VSLOID -> Author_Smith
VSLOID -> ONT_lens
VSLOID -> ONT_digital-camera
VSLOID -> ONT_photography

V. IMPLEMENTATION

We have developed GLEN (Global Lecture Exchange
Network), a prototype of a P2P client based on Azureus
(Vuze) [5]. We have extended the Azureus interface to offer the
function of adding a learning object and searching the network.
The indexing and searching schemes presented above use the
DHT functionality of OpenDHT. In the current version, we use
a tracker for downloading and we work on the development
of the trackless version.

To present the possibilities of the prototype, we illustrate
its main features. Figure 3 shows the window for adding a
new learning object. The user publishes the object in the
SCORM format and the most important semantic attributes
are extracted from the object. Then, the user can add terms
and concepts from the domain ontology (on the right of
the figure) with the two main built-in concepts for testing
purposes: photography and mathematics. GLEN stores
the indexing information in OpenDHT as described previously
and offers a searching interface to the user.

The user can specify search attributes such as title, author, or
description keywords, and choose a concept from the domain
ontology. The parent terms of the concept are automatically
added and the system queries OpenDHT to find relevant
VSLOIDs.

Figure 4 presents the searching interface in which the user
specifies Author: joe. GLEN retrieves VSLOIDs linked
to the attribute and lists the learning objects relevant to the
query (in our example there is only one relevant object—
Introduction to Algebra). When the user clicks on
the title, more details are shown and user can decide to

 
1668



Figure 4. Searching interface of GLEN.

download the object. Its SIP address is stored in OpenDHT
and she becomes the member of the community related to the
object.

VI. RELATED WORK

Some work has already pointed out the importance of
applying P2P technologies to education. Edutella has pro-
posed a peer-to-peer architecture for exchanging RDF-based
metadata [12]. It builds upon Semantic Web techniques and
the JXTA middleware. Its purpose is to make the reuse of
globally distributed learning resources easier. Berman and
Annexstein has considered P2P technologies as crucial in
future educational systems [13]. In particular, they propose
to integrate them in a new personal knowledge management
paradigm, which is useful for students and educators in many
activities encountered in everyday teaching, researching, and
learning.

Much work considered indexing schemes for P2P networks
and we mention here only a few proposals. Felber et al.
describe techniques for indexing data in P2P networks based
on hierarchically organized multiple indexes and distributed
across the nodes of the network [14]. They present several
interesting properties, but require a profound modification in
the DHT operation of existing systems. Our design attempted
to reuse the existing DHT structure for indexing and searching
learning objects. Semantic Overlay Networks (SON) represent
another approach to searching in P2P networks: nodes connect
to other nodes with similar content so that queries can be
propagated to appropriate semantically related nodes [15].

Although DHT networks that we used in our indexing
scheme offer efficient access to searched items, they can not

effectively support partial-match or approximate (proximity)
queries. Cohen et al. proposed a design based on unstructured
architectures such as Gnutella and FastTrack with the support
for partial match queries and relative resilience to peer failures
while obtaining orders of magnitude improvement in the
efficiency of locating rare items [16].

VII. CONCLUSION

In this paper, we have presented an approach to enhance cur-
rent advanced educational tools. Our idea is to take advantage
of widely-spread and adopted P2P networks for disseminating
learning objects. We consider them as an ideal means for
creating collaborative communities of learners with similar
interests.

We have described a scheme for indexing and searching
complex mutable SCORM learning objects over the P2P
network of BitTorrent. We use OpenDHT, an open distributed
storage service implemented over Planet Lab to store all
needed associations: links between a learning object, its ver-
sions, and a torrent, as well as inverted indexes and the
information on SIP addresses of community members. Our in-
dexing scheme extends traditional attribute-based approaches
with precise indexing terms from a domain ontology. We
have enhanced Azureus, an open source BitTorrent client with
our indexing support and added a searching interface. Our
first experiences with the prototype show that the indexing
functionalities contribute to improved searching. We continue
to test the support for creating collaborative communities and
providing easy VoIP communication between its members.

 
1669



REFERENCES

[1] ADL, “Sharable Content Object Reference Model (SCORM),” in
http://www.adlnet.org, 2004.

[2] BitTorrent. [Online]. Available: http://www.bittorrent.com
[3] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy, S. Shenker,

I. Stoica, and H. Yu, “OpenDHT: A Public DHT Service and Its Users,”
in SIGCOMM, 2005.

[4] PlanetLab. [Online]. Available: http://www.planet-lab.org
[5] Azureus, “An Open Source BitTorrent Client.” [Online]. Available:

http://azureus.sourceforge.net
[6] R. T. Mason and T. J. Ellis, “Extending SCORM LOM,” Issues in

Informing Science and Information Technology, vol. Volume 6, 2009.
[7] eXe, “The eLearning XHTML editor.” [Online]. Available:

http://exelearning.org
[8] P. Maymounkov and D. Mazieres, “Kademlia: A Peer-to-Peer Informa-

tion System Based on the XOR Metric,” in 1st International Workshop
on Peer-to-peer Systems, 2002.

[9] Dublin Core Metadata Initiative, “Dublin core metadata element set
(DCMES) Version 1.1. Recommendation,” in Dublin Core Metadata
Initiative, 1999.

[10] E. Nawarecki, G. Dobrowolski, S. Ciszewski, and M. Kisiel-Dorohinicki,
“Ontology of Cooperating Agents by Means of Knowledge Compo-
nents,” in LNCS, Vol. 2691, Multi-Agent Systems and Applications III,,
2003.

[11] W3C, “Resource Description Framework (RDF),” 2004.
[12] W. Nejdl et al., “Edutella: a P2P Networking Infrastructure based on

RDF,” in Proc. of 11th World Wide Web Conference, 2002.
[13] K. Berman and F. Annexstein, “An Educational Tool for the 21st Cen-

tury: Peer-to-peer Computing,” in Ohio Learning Network Conference,
Windows on the Future Conference, 2003.

[14] P. Felber, E. Biersack, L. Garces-Erce, K. Ross, and G. Urvoy-Keller,
“Data Indexing and Querying in P2P DHT Networks,” in ICDCS, Tokyo,
2004.

[15] H. Garcia-Molina and A. Crespo, “Semantic Overlay Networks for P2P
Systems,” Stanford InfoLab, Technical Report 2003-75, 2003.

[16] E. Cohen, A. Fiat, and H. Kaplan, “Associative Search in Peer To Peer
Networks: Harnessing Latent Semantics,” Computer Networks, vol. 51,
no. 8, 2007.

 
1670




